Semester -VIII

Sub Code	Subject Name	Teach	ing Schem	e(Hrs.)		Credits Assi	gned	
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
EXC801	CMOS VLSI Design	04			04			04
EXC802	Advanced Networking	04			04			04
	Technologies							
EXC803	MEMS Technology	04			04			04
EXC804X	Elective -II	04			04			04
EXC806	Project - II		04			04		04
EXL801	CMOS VLSI Design		02			01		01
	Laboratory							
EXL802	Advanced Networking		02			01		01
	Technologies Laboratory							
EXL803	MEMS Laboratory		02			01		01
EXL804X	Elective –II Laboratory		02			01		01
Total		16	12		16	08		24

Subject	Subject Name			Ex	amination Scheme				
Code			Т	heory Marks		Term	Practical	Oral	Total
		In	ternal a	ssessment	End	Work	& Oral.		
		Test	Test	Ave. Of	Sem.				
		1	2	Test 1 and	Exam				
				Test 2					
EXC801	CMOS VLSI Design	20	20	20	80	-			100
EXC802	Advanced Networking	20	20	20	80				100
	Technologies								
EXC803	MEMS Technology	20	20	20	80				100
EXC804X	Elective -II	20	20	20	80				100
EXC806	Project - II					50		50	100
EXL801	CMOS VLSI Design					25		25	50
	Laboratory								
EXL802	Advanced Networking					25		25	50
	Technologies Laboratory								
EXL803	MEMS Technology					25		25	50
	Laboratory								
EXL804X	Elective –II Laboratory					25		25	50
Total				80	320	150		150	700
TUtal				OV	340	130		130	700

Elective –**II**

Code	Name of Elective
EXC8041	Robotics
EXC8042	Mobile Communication
EXC8043	Digital Control System
EXC8044	Biomedical Electronics

	Name							
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
EXC801	CMOS VLSI Design	04			04			04

Subject	Subject		Examination Scheme										
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total				
		Int	Internal assessment End Sem.			Work							
		Test	Test	Avg. of	Exam								
		1	2	Test 1 and									
				Test 2									
EXC801	CMOS	20	20	20	80				100				
	VLSI Design												

Course Pre-requisite:

- EXC302: Electronic Devices
- EXC303: Digital Circuits and Design
- EXC402: Discrete Electronic Circuits
- EXC502: Design With Linear Integrated Circuits
- EXC601: VLSI Design
- EXC702: IC Technology

Course Objectives:

- 1. To teach analysis and design of building blocks of CMOS Analog VLSI Circuits.
- 2. To highlight the issues associated with the CMOS analog VLSI circuit design.

Course Outcomes:

After successful completion of the course student will be able to

- 1. discuss tradeoffs involved in analog VLSI Circuits.
- 2. analyze building blocks of CMOS analog VLSI circuits.
- 3. design building blocks of CMOS analog VLSI circuits
- 4. carry out verifications of issues involved in analog circuits via simulations

No.	No.		
1.0		CMOS analog building blocks	8
	1.1	MOS Models: Necessity of CMOS analog design, Review of characteristics of	
		MOS device, MOS small signal model, MOS spice models	
	1.2	Passive and Active Current Mirrors: Basic current mirrors, Cascode current	
		mirrors and Active current mirrors	
	1.3	Band Gap References: General Considerations, Supply-independent biasing,	
		Temperature independent references, PTAT current generation and Constant Gm	
		biasing	
2.0		Single Stage Amplifiers	10
	2.1	Configurations: Basic concepts, Common source stage, Source follower, Common	
		gate stage, Cascode stage	
	2.2	Frequency Response and Noise: General considerations, Common-source stage,	
		Source followers, Common-gate stage, Cascode stage and Noise in single stage	
		amplifiers	
3.0		Differential Amplifiers	10
	3.1	Configurations: Single ended and differential operation, Basic differential pair,	
		Common-mode response, Differential pair with MOS loads, Gilbert cell	
	3.2	Frequency response and noise in differential pair	
4.0		MOS Operational Amplifiers	10
	4.1	Op-amp Design: General Considerations, performance parameters, One-stage op-	
		amps, Two-stage op-amps, Gain Boosting, Common-mode feedback, Input range	
		limitations, Slew Rate, Power supply rejection, Noise in op-amps	
	4.2	Stability and Frequency Compensation: General Considerations, Multipole	
		systems, Phase margin, Frequency compensation, compensation of two stage op-	
		amps	
5.0		Mixed Signal Circuits	10
	5.1	Switch Capacitor Circuits: MOSFETs as switches, Speed considerations,	
		Precision Considerations, Charge injection cancellation, Unity gain buffer, Non-	
		inverting amplifier and integrator	
	5.2	Oscillators: General considerations, Ring oscillators, LC oscillators, VCO	
	5.3	Phase-Locked Loop: Simple PLL, Charge pump PLL, Nonideal effects in PLL,	
		Delay locked loops and applications of PLL in integrated circuits	
6.0		Analog Layout and other concepts	04
	6.1	Analog Layout Techniques: Antenna effect, Resistor matching, capacitor	
		matching, current mirror matching, floorplanning, shielding and guard rings	
	6.2	AMS design flow, ASIC, Full custom design, Semi custom design, System on Chip,	
		System in package, Hardware software co-design	
		Total	52

- 1. B Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 1st Edition.
- 2. R. Jacaob Baker, Harry W. Li, David E. Boyce, "CMOS Circuit Design, Layout, and Stimulation", Wiley, Student Edition
- 3. P. E. Allen and D. R. Holberg, "*CMOS Analog Circuit Design*", Oxford University Press, 3rd Edition.
- 4. Gray, Meyer, Lewis, Hurst, "Analysis and design of Analog Integrated Circuits", Willey, 5th Edition

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course	Course Name	Teaching Scheme	Credits Assigned

Code								
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EXC 802	Advanced	04			04			04
	Networking							
	Technologies							

Course	Course Name	Examination Scheme								
Code			The	eory Marks		Term	Practical	Oral	Total	
		Int	ernal ass	sessment	End	Work				
		Test 1	Test 2	Ave. Of	Sem.					
				Test 1 and	Exam					
				Test 2						
EXC 802	Advanced	20	20	20	80	-	-	-	100	
	Networking									
	Technologies									

Course Pre-requisite:

• EXE704: Computer Communication Networks

Course Objectives:

- 1. To make students familiar with data communication technologies and how to use them to: Design, Implement, Operate, Manage enterprise networks.
- 2. To introduce the concept of wireless WAN, WAP and different IEEE standards.

Course Outcomes:

Upon completion of the course, students should be able to:

- 1. Analyze the performance of networks.
- 2. Determine the network performance using monitor tools..
- 3. Set up WLAN, PAN
- 4.Explain optical networking technology

Module	Unit	Topics	Hrs.
--------	------	--------	------

No.	No.		
1		Emerging Wireless Technologies	10
	1.1	Wireless Personal Area Network – Bluetooth Bluetooth (IEEE	
		802.15.1), Definitions of the Terms Used in Bluetooth, Bluetooth	
		Protocol Stack, Bluetooth Link Types, Bluetooth Security, Network	
		Connection Establishment in Bluetooth, Network Topology in	
		Bluetooth, Bluetooth Usage Models	
	1.2	Bluetooth Applications, WAP and Bluetooth Wireless Personal Area	
		Networks (WPAN):Low Rate (LR) and High Rate (HR)Wireless	
		Sensor Network, Usage of Wireless Sensor Networks, Wireless	
		Sensor Network	
	1.3	Model, Sensor Network Protocol Stack, ZigBee Technology, IEEE	
		802.15.4 LR-WPAN Device Architecture, IEEE 802.15.3a Ultra	
		WideBand, Radio Frequency Identification.	
2		Optical Networking	06
	2.1	ONET/SDH Standards, devices, DWDM, frame format, DWDM,	
		Performance and design considerations.	
3		WAN Technologies	12
	3.1	Frame: FR concept, FR specifications, FR design and VoFR and	
		Performance and design considerations	
	3.2	ATM: The WAN Protocol: Faces of ATM, ATM Protocol	
		operations. (ATM cell and Transmission) ATM Networking basics,	
		Theory of Operations, B-ISDN reference model, PHY layer, ATM	
		Layer (Protocol model), ATM layer and cell	
	3.3	Traffic Descriptor and parameters, Traffic Congestion control	
		defined, AAL Protocol model, Traffic contract and QoS, User Plane	
		overview, Control Plane AAL, Management Plane, Sub S3	
		ATM,ATM public services	
4		Network Design	08
	4.1	Network layer design, access layer design, access network capacity,	
		network topology and Hardware and completing the access network	
		design.	
5		Network Security	08
	5.1	Security threats, safeguards and design for network security	
	5.2	Enterprise Network Security: DMZ, NAT, SNAT, DNAT, Port	
		Forwarding, Proxy, Transparent Proxy, Packet Filtering and Layer 7	
		Filtering	
6		Network Management and Control	
	6.1	Network management definitions, functional areas (FCAPS), SNMP,	08
		RMON,	
	6.2	Designing a network management solutions, Monitoring and control	
		of network activity and network project management	
		Total	52

- 1. Data Network Design by Darren Spohn, 3e McGraw Hill publications
- 2. Data Communication and Network Security by Carr and Snyder, McGraw Hill Publications.
- 3. Communication Networks by Leon-Garcia and Indra Widjaja, 2e, Tata McGraw-Hill Publications.
- 4. Information Security by Mark Stamp and Deven Shah by Wiley Publications.
- 5. Behrouz A Forouzan, Data communications and Networking 4th Edition,
- 6. McGraw-Hill Publication.
- 7. William Stallings, Data Computer Communications, Pearson Education
- 8. Wireless communication and Networking-Vijay Garg, ELSEVIER Inc
- 9. Eldad Perahita ,Next Generation wireless LANS, Cambridge Publication
- 10. Computer Networking by J. F. Kurose and K. W. Ross, Pearson Education
- 11. Local Area Networks by Gerd Keiser, McGraw-Hill Publication.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject	Course	Teaching	Credits Assigned									
Code	Name	Scheme										
		Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total				
						Practical						
EXC803	MEMS	04			04			04				
	Technology											

Subject	Subject Name		Examination Scheme								
Code				Theory Mar	ks	Term	Practical	Oral	Total		
		Internal assessment E			End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
EXC803	MEMS	20	20	20	80	-	-	-	100		
	Technology										

Course Pre – requisite:

- EXC 404: Basic VLSI Design
- EXC 604: IC Technology

Course Objective:

- To provide a basic knowledge of MEMS processing steps and processing modules.
- To demonstrate the use of semiconductor based processing modules used in the fabrication of variety of sensors and actuators (e.g. pressure sensors, accelerometers, etc.) at the micro-scale.
- To provide an understanding of basic design and operation of MEMS sensors and transducers.

Course Outcome:

On Completion of this course Student will be able to

- Understand the underlying fundamental principles of MEMS devices including physical operation, mathematical modeling and fabrication.
- Design and simulate MEMS devices and system using standard simulation tools.
- Develop different concepts of micro system sensors and actuators for real-world applications.

Module	Unit	Topics	Hrs.
No.	No.		
1.		Introduction to MEMS	04
	1.1	Introduction to MEMS & Real world Sensor/Actuator examples (DMD, Air-bag,	
		pressure sensors). MEMS Sensors in Internet of Things (IoT), BioMedical	
		Applications	
2		MEMS Materials and Their Properties	10
	2.1	Materials (eg. Si, SiO2, SiN, Cr, Au, Ti, SU8, PMMA, Pt); Important properties:	
		Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal	
		Conductivity, Material Structure. Understanding Selection of materials based on	
		applications.	
3		MEMS Fab Processes – 1	11
	3.1	Understanding MEMS Processes & Process parameters for: Cleaning, Growth &	
		Deposition, Ion Implantation & Diffusion, Annealing, Lithography. Understanding	
		selection of Fab processes based on Applications	
4		MEMS Fab Processes – 2	10
	4.1	Understanding MEMS Processes & Process parameters for: Wet & Dry etching, Bulk	
		& Surface Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging.	
		Understanding selection of Fab processes based on Applications	
5		MEMS Devices	11
	5.1	Architecture, working and basic quantitative behaviour of Cantilevers, Microheaters,	
		Accelerometers, Pressure Sensors, Micromirrors in DMD, Inkjet printer-head.	
		Understanding steps involved in Fabricating above devices	
6		MEMS Device Characterization	06
	6.1	Piezoresistance, TCR, Stiffness, Adhesion, Vibration, Resonant frequency, &	
		importance of these measurements in studying device behavior, MEMS Reliability	
		Total	52

- 1. An Introduction to Microelectromechanical Systems Engineering; 2nd Ed by N. Maluf, K Williams; Publisher: Artech House Inc
- 2. Practical MEMS by Ville Kaajakari; Publisher: Small Gear Publishing
- 3. Microsystem Design by S. Senturia; Publisher: Springer
- 4. Analysis and Design Principles of MEMS Devices Minhang Bao; Publisher: Elsevier Science
- 5. Fundamentals of Microfabrication by M. Madou; Publisher: CRC Press; 2 edition
- 6. Micro Electro Mechanical System Design by J. Allen; Publisher: CRC Press
- 7. Micromachined Transducers Sourcebook by G. Kovacs; Publisher: McGraw-Hill

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Teaching Scheme			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
EXC8041	Robotics	04			04			04	

Subject	Subject		Examination Scheme								
Code	Name			Theory Mar	·ks	Term	Practical	Oral	Total		
		Internal assessment			End Sem.	Work					
		Test	Test	Avg. of	Exam						
		1	2	Test 1 and							
				Test 2							
EXC8041	Robotics	20	20	20	80				100		

Course Pre-requisite:

- EXS 301 : Applied Mathematics III
- EXS 401 : Applied Mathematics IV
- EXC 404 : Principles of Control Systems

Course Objectives:

- 1. To prepare students with basics of robotics
- 2. To familiarize students with kinematics & dynamics of robots
- 3. To familiarize students with path & Trajectory planning of robots
- 4. To familiarize students with robot vision

Course Outcomes:

After successful completion of the course student will be able to

- 1. Describe kinematics and dynamics of stationary and mobile robots
- 2. Describe trajectory planning for robots
- 3. Implement trajectory generation and path planning various algorithms
- 4. Work in interdisciplinary projects

Module	Unit No	Topics	Hrs.
1	110.	Fundamentals of Robotics	03
-	1.1	Robot Classification, Robot Components, Degrees of freedom, Joints, Coordinates,	05
		Coordinate frames, workspace, applications	
2		Forward & Inverse Kinematics of Robots	09
	2.1	Homogeneous transformation matrices, Inverse transformation matrices, Forward	
		and inverse kinematic equations – position and orientation	
	2.2	Denavit-Hatenberg representation of forward kinematics, Inverse kinematic	
		solutions, Case studies	
3		Velocity Kinematics & Dynamics	14
	3.1	Differential motions and velocities : Differential relationship, Jacobian,	
		Differential motion of a frame and robot, Inverse Jacobian, Singularities.	
	3.2	Dynamic Analysis of Forces : Lagrangian mechanics, Newton Euler formulation,	
		Dynamic equations of robots, Transformation of forces and moment between	
		coordinate frames	
4		Robot Motion Planning	04
	4.1	Concept of motion planning, Bug Algorithms – Bug1, Bug2, Tangent Bug	
5		Potential Functions and Visibility Graphs	08
	5.1	Attractive/Repulsive potential, Gradient descent, wave-front planner, navigation	
		potential functions, Visibility map, Generalized Voronoi diagrams and graphs,	
		Silhouette methods	
6		Trajectory planning	08
	6.1	Trajectory planning, Joint-space trajectory planning, Cartesian-space trajectories	
7		Robot Vision	06
	7.1	Image representation, Template matching, Polyhedral objects, Shape analysis,	
		Segmentation, Iterative processing, Perspective transform.	ļ
		Total	52

- 1. Robert Shilling, Fundamentals of Robotics Analysis and control, Prentice Hall of India
- 2. Saeed Benjamin Niku, "Introduction to Robotics Analysis, Control, Applications", Wiley India Pvt. Ltd., Second Edition, 2011
- 3. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, "Principles of Robot Motion Theory, Algorithms and Implementations", Prentice-Hall of India, 2005.
- 4. Mark W. Spong , Seth Hutchinson, M. Vidyasagar, "Robot Modeling & Control ", Wiley India Pvt. Ltd., 2006
- 5. John J. Craig, "Introduction to Robotics Mechanics & Control", Third Edition, Pearson Education, India, 2009
- 6. Aaron Martinez & Enrique Fernandez, "Learning ROS for Robotics Programming", Shroff Publishers, First Edition, 2013.
- 7. Mikell P. Groover et.al, "Industrial Robots-Technology, Programming & applications" ,McGraw Hill , New York, 2008

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
EXC 8042	Mobile Communication	04			04			04		

Subject	Subject Name		Examination Scheme							
Code		Theory Marks				Term	Practical	Oral	Total	
		Internal assessment End Sem.				Work				
		Test 1	Test	Ave. Of	Exam					
			2	Test 1 and						
				Test 2						
EXC 8042	Mobile	20	20	20	80				100	
	Communication									

Course Pre-requisite:

- EXC 704: Computer Communication Networks
- EXC: Digital Communication

Course Objectives:

To enable the student to study, understand and appreciate the concepts of mobile communication technology. **Course Outcomes:**

After successful completion of the course student will be able to

- 1. Understand the fundamentals of mobile communications
- 2. Differentiate between GSM and CDMA
- 3. Understand the evolving wireless communication technologies.
- 4. Understand the requirement of 4 G technology

Module	Unit	Topics	Hrs.
No.	No.		
1		Cellular Communication System	10
	1.1	Introduction to Cellular Communications, Frequency reuse, Multiple Access	
		Technologies	
	1.2	Cellular Processes: Channel assignment, Call Setup, Handoff strategies,	
		interferences and system capacity	
	1.3	Traffic Theory: Trunking and grade of service, improving system capacity	
2		GSM	8
	2.1	GSM Network architecture, signaling protocol architecture, identifiers,	
		channels, Frame structure, speech coding, authentication and security, call	
		procedure, handoff procedure, services and features	
3		CDMA digital cellular standard (1S-95).	8
	3.1	Frequency and channel specifications of IS-95, forward and reverse CDMA	
		channel, packet and frame formats, mobility and radio resource management	
4		3 G Mobile Communication System	10
	4.1	2.5 G TDMA Evolution Path, GPRS, EDGE, 2.5G CDMA one cellular N/W,	
		Need of 3G Cellular N/w, IMT 2000 Global Standard, UMTS Technology,	
		W-CDMA Air interface, TD-SCDMA Technology, CDMA 2000 Cellular	
		Technology	
5		4G Wireless Standards	8
	5.1	Need for 4G network, difference between 3G and 4G, LTE, WiMAX	
6		Emerging Technologies	8
	6.1	Mobile Adhoc Network, Mobile IP and Mobility Management, Mobile TCP,	
		Wireless Sensor Networks, RFID Technology	
		Total	52

- 1. Wireless Communications Theodore S. Rappaport, Prentice Hall of India, PTR publication
- 2. Mobile & Personal Communication system & Services by Raj Pandya , Prentice –Hall of India (PHI) Private Limited
- 3. Principles of Wireless Networks-KavehPahlavan, Prashant Krishnamurthy, PHI
- 4. Wireless communication and Networking-Vijay Garg, ELSEVIER Inc
- 5. Wireless communication- Singhal_TMH
- 6. Fundamentals of Wireless Communications, "David Tse and Pramod Viswanath, Publisher, Cambridge University Press.
- 7. Wireless Communications: Andrea Goldsmith, Cambridge University Press.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code S	ubject Teac Name	hing Schem	e (Hrs.)	Credits Assigned				
1	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
EXC 8043 Digi	ital 04			04			04	
Con	trol							

Subject	Subject				Examination	Scheme			
Code	Name	Theory Marks				Term	Practical	Oral	Total
		Inte	rnal as	ssessment	End Sem.	Work			
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and					
				Test 2					
EXC 8043	Digital	20	20	20	80				100
	Control								
	System								

Course Prerequisites:

- EXC404: Principles of Control System
- EXC504: Signals and Systems

Course Objective:

- 1. To study the importance of digital control
- 2. To study stability analysis of digital control systems
- 3. To study the design of digital control systems

Course Outcomes:

- 1. Students will be able to differentiate between analog and digital control and importance of digital control
- 2. Student will be able to analyze the digital control systems
- 3. Students will be able to design digital controllers

Module	Unit	Topics	Hrs.
No.	N0.		
1.0	1.1	Introduction	10
	1.1	why digital control system? Advantages and limitations, comparison of continuous and discrete data control, block diagram of digital control system	12
	1.2	Data conversion and quantization, sampling and reconstruction of analog signal, zero and first order hold	
	1.3	Impulse invariance, bilinear transformation, finite difference approximation of derivatives	
2.0		Modeling of Digital Control System	04
	2.1	Linear difference equation, pulse transfer function, input output model	
	2.2	Examples of first order continuous and discrete time systems	
	2.3	Signal flow graph applied to digital control system	
3.0		Time Domain Analysis and Stability of Digital Control System	08
	3.1	Mapping between s plane and Z plane, Jury's method, R. H. criteria	
	3.2	Comparison of time response of continuous and digital control system	
	3.3	Steady state analysis of digital control system, effect of sampling on transient	
4.0		State Space Analysis	08
7.0	41	Discrete time state equation in standard canonical form similarity transformation	00
	<u> </u>	State transition matrix solution of discrete time state equation	
	4.2	Discretization of continuous state space model and its solution	1
5.0	т.Ј	Pole Placement and Observer Design	10
5.0	51	Concept of reachability controllability constructability and observability	10
	52	Design of controller using pole placement method, dead beat controller design	
	53	Concept of duality state observer design concept of multi-rate output feedback based	
	0.0	state estimation	
6.0		Transfer Function Approach to Controller Design	10
	6.1	Control structures, internal stability,	1
	6.2	Internal model principle and system type, well behaved signals	1
	6.3	Discretization of PID controllers, pole placement controllers with performance	1
		Total	52

- 1. M. Gopal, "Digital Control and State Variable Methods", McGraw Hill companies, 3rd edition, 2009.
- 2. K. Ogata, "Discrete-Time Control Systems", PHI, 2nd edition, 2009.
- 3. B. C. Kuo, "Digital Control Systems", Oxford University press, 2nd edition, 2007.
- 4. K. M. Moudgalya, "Digital Control", Wiley India, 2012.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course code	Course Name	Teaching	Scheme (Hrs	Credit Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tut.	Total
EXC8044	Biomedical Electronics	4						4

Course	Course Name			E	xaminati	ion Sche	me		
code]	Theory (ou	ut of 100)		Term	Practical	Oral	Total
		Internal Assessment (out End				Work	and		
		of 20) Sen					oral		
		Test 1	Avg.	Exam					
EXC8044	Biomedical Electronics	20	20	20	80				150

Course Pre-requisites:

- EXC305:Electronic Instruments and Measurements
- FEC102,202: Applied Physics I and II

Course Objective:

- 1. To make students understand the Identification, classification, and working principle of various Biomedical Instruments used for Bio-potential measurement
- 2. Application of these instruments in diagnosis, therapeutic treatment and imaging fields

Course Outcome:

The Students will be able to

- 1. Identify various Bio-potential and their specifications in terms of amplitude and frequency.
- 2. Understand principle and working of various Biomedical Instruments for diagnosis applications.
- 3. Decide the applications of therapeutic instruments for treatment purpose.
- 4. Understand applications of imaging instruments and the modalities involved in each technique.

Module	Unit	Topics	Hrs.
No.	No.		
1		Bio-Potential and Measurement	08
	1.1	Structure of Cell, Origin of Bio-potential, electrical activity of cell their	
		characteristic and specifications.	
	1.2	Measurement of RMP and AP. Electrode-Electrolyte interface and types of	
		bio-potential electrodes.	
2		Physiological Systems and Related Measurement	14
	2.1	Respiratory system- Physiology of respiration and measurements of	
		respiratory related parameters	
	2.2	Cardiovascular system- Structure of Heart, Electrical and Mechanical	
		activity of Heart, ECG measurements and Cardiac arrhythmias	
	2.3	Nervous system- Nerve cell, neuronal communication, nerve-muscle	
		physiology, CNS, PNS. Generation of EEG and its measurement. Normal	
		and abnormal EEG, evoked potential and epilepsy	
	2.4	Muscular system- Generation of EMG signal, specification and	
		measurement.	
		Design of ECG amplifier	
3		Cardiovascular Measurement	08
	3.1	Blood Pressure- Direct and Indirect types.	
		Blood Flow- Electromagnetic and Ultrasonic types.	
		Blood Volume- Types of Plethysmography. (Impedance, Capacitive and	
		Photoelectric)	
		Cardiac Output- Flicks method, Dye-dilution and Thermo-dilution type.	
		Heart sound measurement	
4		Life support Instruments	08
	4.1	Pacemaker- Types of Pacemaker, mode of pacing and its application.	
		Defibrillator- AC and DC Defibrillators and their application.	
		Heart Lung machine and its application during surgery.	
		Haemodialysis system and the precautions to be taken during dialysis.	
		Baby Incubator and its application	10
5		Imaging Techniques	10
	5.1	X-Ray- Generation, X-ray tube and its control, X-ray machine and its	
		application	
	5.2	CT Scan- CT Number, Block Diagram, scanning system and application.	
		Ultrasound Imaging- Modes of scanning and their application	
	5.3	MRI- Concepts and image generation, block diagram and its application	
6		Significance of Electrical Safety	04
	6.1	Physiological effects of electrical current, Shock Hazards from electrical	
		equipments and methods of accident prevention.	
		Total	52

- 1. Leslie Cromwell, "Biomedical Instrumentation and Measurements", 2nd Edition, Pearson Education, 1980.
- 2. John G. Webster, "Medical Instrumentation", John Wiley and Sons, 4th edition, 2010.
- 3. R. S. Khandpur, "Biomedical Instrumentation", TMH, 2004
- 4. Richard Aston, "Principles of Biomedical Instrumentation and Instruments", PH, 1991.
- 5. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", PHI/Pearson Education, 4th edition, 2001.
- 6. John E Hall, Gyton's Medical Physiology, 12th edition, 2011

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EXL 801	CMOS VLSI		02			01		01
	Design							
	Laboratory							

Course	Course			E	xamination S	Scheme				
Code	Name		Theory Marks				Practical	Oral	Total	
		Internal assessment			End Sem.	Work	and			
		Test	Test	Ave. Of Test 1	Exam		Oral			
		1	2	and Test 2						
EXL801	CMOS					25		25	50	
	VLSI									
	Design									
	Laboratory									

At least 10 experiments based on the entire syllabus of Subject **EXC801** should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged. The attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time**. The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Practical and oral exam will be based on the entire syllabus of **EXC801**.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EXL 802	Advanced		02			01		01	
	Networking								
	Technologies								
	Laboratory								

Course	Course Name			E	xamination	Scheme			
Code			Theory Marks				Practical	Oral	Total
]	Internal assessment End Sem.				and		
		Test	Test 2	Ave. Of Test 1	Exam		Oral		
		1		and Test 2					
EXL802	Advanced					25		25	50
	Networking								
	Technologies								
	Laboratory								

At least 10 experiments based on the entire syllabus of Subject **EXC802** should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged. The attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time**. The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Practical and oral exam will be based on the entire syllabus of EXC802.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EXL 803	MEMS		02			01		01	
	Technology								
	Laboratory								

Course	Course Name			Ex	xamination	Scheme	e		
Code			r	Fheory Marks	Term	Practical	Oral	Total	
		Iı	nternal	assessment	End	Work	and		
		Test	Test	Ave. Of Test		Oral			
		1	2	1 and Test 2	Exam				
EXL803	MEMS					25		25	50
	Technology								
	Laboratory								

At least 10 experiments based on the entire syllabus of Subject **EXC803** should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged. The attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time**. The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Practical and oral exam will be based on the entire syllabus of **EXC803**.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Total		
EXL 804X	Elective –II		02			01		01
	Laboratory							

Course	Course Name		Examination Scheme						
Code				Theory Marks	Term	Practical	Oral	Total	
		Iı	nternal	assessment	End Sem.	Work	and		
		Test	Test Test Ave. Of Test 1				Oral		
		1	2	and Test 2					
EXL	Elective –II					25		25	50
804X	Laboratory								

At least 10 experiments based on the entire syllabus of Subject **EXE804X** should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged. The attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time**. The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Practical and oral exam will be based on the entire syllabus of EXE804X.

Elective –**II**

Code	Name of Elective	
EXC8041	Robotics	
EXC8042	Mobile Communication	
EXC8043	Digital Control System	
EXC8044	Biomedical Electronics	

Course Code	Course Name	Te	Teaching Scheme			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
EXC806	Project - II		04			02		02		

Course	Course Name	Examination Scheme							
Code		Theory Marks				Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
EXC806	Project - II					50	-	50	100

The final year students have already under gone project assignment in their seventh semester and in this semester the students are expected to continue the project work of stage I.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Design, implementation, and analysis of the project work.
- Results, conclusions and future scope.
- Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.