	RSA set1 Sept 20	
1	If $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$ then $A \cup B$ is given as	1
	{3,4}	
	{1,2,3,4,5,6}	
	{1,2}	
	{5,6}	
2	If two coins are tossed then the sample space is given as	1
	{HH, TT}	
	{TH, TT}	
	{HH, HT}	
	{HH, HT, TH, TT}	
3	Which of the following is not the Axiom of Probability?	1
	For any event A, $P(A) \ge 0$	
	Probability of the sample space S is P(S)=1.	
	Probability of the sample space S is $P(S) < 1$.	
4	If A1, A2, A3, \cdots are disjoint events, then P(A1UA2UA3 \cdots)=P(A1)+P(A2)+P(A3)+ \cdots	2
4	If A and B are two events in a sample space S then probability of the joint event AB is given as	2
	P(AB) = P(A)P(B/A)	
	P(AB) = P(B)P(B/A)	
	P(AB) = P(A)P(2B)	
	P(AB) = P(A)P(B/AB)	
5	If A1, A2, A3, … is a partition of the sample space S, then as per Total Probability	1
	Theorem, for any event B we have	
	$P(B) = \sum_{i} P(Ai) \cdot P(B/Ai)$	
	$P(B) = \sum_{i} P(Ai) \cdot P(Bi/A)$	
	$P(B) = \sum_{i} P(Ai) \cdot P(B \cdot Ai)$	
	$P(B) = \sum_{i} P(Ai) \cdot P(B + Ai)$	
6	If A1, A2, A3, form a partition of the sample space S, and B is any event with	1
	$P(A) \neq 0$, then as per Baye's Theorem we have	
	$\mathbf{P}(\mathbf{Ai/B}) = \frac{P(Ai).P(B/Ai)}{\sum_{i} P(Ai).P(B/Ai)}$	
	$\sum_{i} P(Al) P(B/Al)$ $P(A/Bi)$	
	$P(Ai/B) = \frac{\Gamma(a/Bi)}{\sum P(Bi) P(A/Bi)}$	
	P(Bi)	
	$P(A1/B) = \frac{1}{\sum_{i} P(Bi) \cdot P(A/Bi)}$	
	$P(Ai/P) = \frac{P(Bi) + P(A/Bi)}{P(Bi) + P(A/Bi)}$	
	$P(Ai/B) = \frac{\frac{P(A/Bi)}{P(A/Bi)}}{\sum_{i} P(Bi).P(A/Bi)}$ $P(Ai/B) = \frac{P(Bi)}{\sum_{i} P(Bi).P(A/Bi)}$ $P(Ai/B) = \frac{P(Bi) + P(A/Bi)}{\sum_{i} P(Bi).P(A/Bi)}$	
7	If X is random variable representing the number of heads when three coins are	2
	tossed, what is the range of X	
	$X = \{1, 2, 3, 4\}$	
	$X = \{0, 1, 2, 3\}$	
	$X = \{0, 1, 2\}$	
	$X = \{0, 1, 2, 3, 4\}$	1
8	The full form of 'Pdf 'of random variable is	1
	Probability Density Function Probability Distribution Function	
	Possibility Density Function	
	Possibility Density Function Possibility Distribution Function	

0		
9	If random variable $X = \{0,1,2,3,4\}$ and $P(X) = \{0.2, 0.2, 0.2, 0.2, 0.2, 0.2\}$ what is	2
	the value of CDF at x=2, F _x (x=3)	
	0.6	
	0.8	
	0.5	
	0.4	
10	If random variable X= {0,1,2,3,4} and P(X) = {0.2, 0.2, 0.2, 0.2, 0.2, 0.2} what is	2
	the value of pdf at $x=2$, $f_x(x=3)$	
	0.3	
	0.2	
	0.1	
	0	
11	As per the property of pdf, the value of the pdf at any point is always	1
	Equal to or greater than zero	
	Equal to or greater than one	
	Less than zero	
	Less than qual to zero	
12	The joint probability distribution of random variable X and Y is defined as	1
	$F_{X,Y}(x, y) = P(X \le x, Y \le y)$	
	$F_{X,Y}(x, y) = P(X \le x).P(Y \le y)$	
	$F_{X,Y}(x, y) = P(X \le x)/P(Y \le y)$	
	$F_{X,Y}(x, y) = P(X \le x) + P(Y \le y)$	
13	If $X = \{0, 1, 2, 3\}$ and $P(X) = \{0.2, 0.3, 0.3, 0.2\}$ Find $P(1.5 < X < 3.5)$	2
15	0.2	2
	0.3	
	0.5	
	0	
14	If X = {0, 1, 2, 3} and P(X) = {0.2, 0.3, 0.3, 0.2} Find P[($0.5 < X < 2.5$)/($1.5 < X < 3.5$)]	2
14	0.2	2
	0.3	
	0.6	
	-	
15	0 If rendem veriable V = (0, 1, 2, 2) then E[V] will be	2
15	If random variable $Y = \{0, -1, 2, -3\}$ then $E[X]$ will be	2
	1.5	
	-0.5	
10	2	2
16	If random variable $X = \{0, -1, 2, -3\}$ then variance will be	2
	3.25	
	0.5	
47		2
17	If random variable $X = \{0, 1, 2, 3\}$ then standard deviation will be	2
	1.18	
	0.5	
	2	
18	E[X - Y] equals	2
	E[X] + E[Y]	
	E[X] - E[Y]	
	E[X] . E[Y]	

	E[X] / E[Y]	
19	If X and Y are independent random variables then	2
19		2
	f(xy) = f(x).f(y)	
	f(xy) = f(x) + f(y)	
	f(xy) = f(x) - f(y)	
	f(xy) = f(x) / f(y)	
20	Variance of random variable can be calculated as	1
	$Var(X) = E[(X - E[X])^2]$	
	$Var(X) = E[(X + E[X])^2]$	
	$Var(X) = E[(X / E[X])^2]$	
	$Var(X) = E[(X \cdot E[X])^2]$	
21	Var[5X + 4] equals	2
	25 Var[X]	
	5 Var[X]	
	16 Var[X]	
	4 Var [X]	
22	Let X be a random variable with probability distribution function	2
	f (x) = 0.2 for x <1	
	$= 0.1 \text{ for } 1 < \mathbf{x} < 4$	
	= 0 otherwise	
	The probability P (0.5 < x < 5) is	
	0.3	
	0.5	
	0.4	
	0.8	
23	If $E(X) = 2$ and $E(Y) = 4$, then $E(X - Y) = ?$	2
23	-2	-
	6	
	0	
	2	
24	In a shooting test, the probability of hitting the target is 1/2 for A, 2/3 for B and	2
24	3/4 for C. If all of them fire at the target. Find the probability that at least one of	2
	them hits the target	
	0.95833	
	0.45833	
	0.75833	
	0.85833	
25	A lot consist of 10 good articles, 4 articles with minor defect and 2 with major	2
	defect. 2 articles are drawn from the lot at random without replacement. Find	
	the probability that both are good articles	
	3/8	
	4/8	
	5/8	
	6/8	
26		2
20	The pdf of random variable is given as $f(x) = 1/2$	2
	$f(x) = 1/3 \dots 3 \le x \le 6$ find the average value of random variable X	
	find the average value of random variable X	
	4.5	
	1.5	
	2.5	
	3.5	

r		
27	The n th order moment of the random variable X is defined as	1
	E[X ⁿ]	
	E[nX]	
	E[X/n]	
	E[X+n]	
28	The relation between Moment generating function and pdf of random variable is	1
	of	
	Laplace Transform	
	Z Transform	
	Fourier Transform	
	Cosine Transform	
29	Given two random variables X and Y, the marginal CDF of X can be calculated	1
	from the joint probability distribution of X,Y as	
	$P(X \le x, Y \le \infty)$	
	$P(X \leq \infty, Y \leq y)$	
	$P(X \leq \infty, Y \leq \infty)$	
	$P(X \le x, Y \le y)$	
30	Random Process is defined as the rule that assigns to the	1
	outcome of random experiment	
	Time function	
	Number	
	Alphabet	
	Letter	
31	In random variable,	1
	Time parameter time t is variable and parameter sample space S is variable	
	Time parameter time t is fixed and parameter sample space S is variable	
	Time parameter time t is variable and parameter sample space S is v fixed	
	Time parameter time t is fixed and parameter sample space S is fixed	_
32	In Ergodic process, Ensemble averages and time averages are	1
	Equal	
	Ensemble averages less time averages	
	Ensemble averages greater time averages	
	Not related	
33	In Markov chains, future values depend on	1
	Future values	
	Present values only	
	Past values only	
L	Present and past values	